A Computational Model for Cursive Handwriting Based on the Minimization Principle
نویسندگان
چکیده
We propose a trajectory planning and control theory for continuous movements such as connected cursive handwriting and continuous natural speech. Its hardware is based on our previously proposed forward-inverse-relaxation neural network (Wada & Kawato, 1993). Computationally, its optimization principle is the minimum torquechange criterion. Regarding the representation level, hard constraints satisfied by a trajectory are represented as a set of via-points extracted from a handwritten character. Accordingly, we propose a via-point estimation algorithm that estimates via-points by repeating the trajectory formation of a character and the via-point extraction from the character. In experiments, good quantitative agreement is found between human handwriting data and the trajectories generated by the theory. Finally, we propose a recognition schema based on the movement generation. We show a result in which the recognition schema is applied to the handwritten character recognition and can be extended to the phoneme timing estimation of natural speech.
منابع مشابه
1 Invariant Handwriting Features Useful in Cursive - Script Recognition
The within-writer variability of handwriting forms one of the problems in the automatic recognition of cursive script. Variability can be handled by choosing handwriting features based upon the process of handwriting generation or upon computational models. Handwriting patterns are represented by a sequence of motor actions, i.e., "strokes", which can be identified by invariant segmentation. Ea...
متن کامل1 Invariant Handwriting Features Useful in Cursive - Script Recognition Hans - Leo
The within-writer variability of handwriting forms one of the problems in the automatic recognition of cursive script. Variability can be handled by choosing handwriting features based upon the process of handwriting generation or upon computational models. Handwriting patterns are represented by a sequence of motor actions, i.e., "strokes", which can be identified by invariant segmentation. Ea...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملA Learning-based Approach to Cursive Handwriting Synthesis ?
This paper proposes a learning-based approach to synthesize cursive handwriting of the user’s personal handwriting style, by combining shape models and physical models together. In the training process, some sample paragraphs written by the user are collected and these cursive handwriting samples are segmented into individual characters by using a two-level writer-independent segmentation algor...
متن کاملLearning-based cursive handwriting synthesis
In this paper, an integrated approach for modeling, learning and synthesizing personal cursive handwriting is proposed. Cursive handwriting is modeled by a tri-unit handwriting model, which focuses on both the handwritten letters and the interconnection strokes of adjacent letters. Handwriting strokes are formed from generative models that are based on control points and B-spline curves. In the...
متن کامل